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ABSTRACT 

Thebagnetic field present in the bore of a hollow, rotating 7 super- 
conducting c y l i n h  is deduced from London’s theory of supercon- 
ductivity. For a cylinder whose transverse dimensions are larger than 
a penetration depth, the results show that the quantity oL + o is a 
constant. Here, oL is the angular Larmor frequency of the electron, a 
measure of the magnetic field in the bore (in fact, proportional to this 
field); o is the angular velocity of the cylinder itself. The constant is 
the value of w L  + o at the time the superconductor becomes super- 
conducting. A nucleation model of the superconducting transition is 
used to deduce this relation. The Meissner effect in rotating super- 
conductors is discussed, and it is pointed out how the effects of an 
applied field on a superconductor tend to be cancelled by its rotation. 
It is pointed out that this cancellation may be important for observing 
superconductivity in superconductors having tiny critical fields. 

1. INTRODUCTION 

Recently, Hildebrandt (Ref. 1) has investigated experi- 
mentally the magnetic fields associated with a rotating, 
hollow, superconducting cylinder. As is shown in this 
Report, the values of the field he observes can be related 
to the fluxoid (Ref. 2) associated with such a cylinder. 
The point then becomes to show how the requisite values 
of the fluxoid are generated. This is done by means of 
an argument in which the actual dynamics of the super- 
conducting transition are considered. A thermodynamic 
argument then shows that the resulting value of the 
fluxoid is the one that yields the most stable state, thermo- 
dynamically, for the superconductor. The expression for 
the free energy that is used in this argument is derived 
and discussed in Part I1 of this series of reports (Ref. 3). 

This Report presents the exact solutions of London’s 
equatiins foq3 rotating hollow cylinder of infinite length, 
with special attention to the dependence of the solution 
on the fluxoid. The results are then applied to an arbi- 
trary hollbw cylinder whose inner diameter and thickness 
are both large compared to the penetration depth, these 
being the conditions satisfied by the cylinders in Hilde- 
brandt’s experiments. (The cylinder is still considered to 
be infinite in length, however.) 

The principal result is that the magnetic field B in the 
hollow of the cylinder is given by le(B/2mc = - (0 - 0; ) .  

Here, lelB/Smc is the Larmor frequency of the electron 
in rad/sec, o is the angular velocity of the cylinder, 
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and "', = oO + e/2mcBmis a quantity that is determined 
at the time the cylinder becomes superconducting, where 
oo is the angular velocity of the cylinder at the time of 
the transition and B,  is the applied field then present. 

evaluate it in the limit of a thin-walled cylinder. The 
proportionality is found to agree with expressions de- 
rived by other means. Also mentioned in the Report 
is the Meissner effect in rotating superconductors and 
the application of this effect to the observation of super- 

In addition, we also derive from our solution the conductivity in superconductors having tiny critical 
fields. proportionality that holds between fluxoid and flux and 

II. LONDON'S EQUATION IN A ROTATING SUPERCONDUCTOR 
AND THE MEISSNER EFFECT 

Our procedure is first to write the solution for London's 
equations as they apply to the rotating hollow cylinder 
and then to express this solution in terms of the flwoid 
and the applied field. Arguments are then given that 
indicate the value to be assigned to the fluxoid. With a 
value assigned the fluxoid, the solution of London's 
equation becomes fully determined. 

London's equation is 

where v8(r) is the superelectron velocity field, B the 
magnetic field, and e/m refers to the electron. Since B 
always satisfies V X B = (47r/c) j, then, in the super- 
conductor, 

where 

P o  = superelectron density 

v1 (r) = velocity field of the lattice (lattice = supercon- 
ductor minus superelectrons) 

Outside the superconductor, 

V X V X B = O  (1b) 

with B continuous across the surface of the supercon- 
ductor. 

For a superconductor rotating with a constant angular 
veIocity, a, vt (r) = a X r, these equations can be written 
in the form 

2mc 
A2 V X V X (B + Bo) + (B + BO) = 0 BO = -a c 

(2) 
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111. SOLUTIONS FOR THE INFINITELY LONG HOLLOW CYLINDER 

The more familiar London equation for a stationary 
superconductor is immediately recovered by setting w = 0, 
and we see that to every solution B = f(r) for the sta- 
tionary superconductor, there is a corresponding solution 
B = f(r) - Bo for the rotating superconductor. Thus, for 
example, the solution B = -Bo everywhere for the ro- 
tating superconductor corresponds to the solution B = 0 
everywhere for the stationary superconductor. What is 
striking is that whereas in the stationary superconductor 
this field Bo would penetrate only to a distance A into the 
superconductor, in a rotating superconductor it permeates 
the superconductor, its value undiminished from the 
value it had outside. We see therefore that the Meissner 
effect in a rotating superconductor must be quite different 
from that in a stationary superconductor. The Meissner 
effect .in a stationary superconductor requires that even 
if the field outside the superconductor is nonzero, the 
field inside the superconductor must remain zero, except 
within a penetration depth A of the surface. This is, of 
course, the familiar exclusion of flux from the interior of 
a bulk superconductor. However, by the correspondence 
of solutions that we have shown to exist between the rotat- 
ing and the stationary superconductor, we see that the 
Meissner effect in a rotating superconductor now requires 
that even though the value of the external field is changed 
from -Bo, the interior field still remains -Bo except 
within a penetration depth A. Both phenomena can be 
described as a Meissner effect. We see now, however, 
that the Meissner effect is not so much an exclusion of 
flux from the bulk of the superconductor as it is an 
exclusion of net current.* 

*The solution B = -Bo, besides serving to contrast the Meissner 
effect as it appears in stationary and in rotating superconductors, 
may also indicate an important use of rotation of superconduc- 
tors. For this solution, both the field configuration and the 
electron motion for the rotating superconductor and for the 
rotating normal conductor are identical, so that the free energy 
difference between normal and superconducting states does not 
depend on the external field. This means that even if a stationary 
superconductor is placed in a uniform field B that is greater than 
the critical field, rotation of the specimen at an angular velocity 
o (a = - ( 2 m c / e )  B )  should allow it to become superconducting 
provided that the temperature of the superconductor is below 
the critical temperature. In a sense, then, rotating the super- 
conductor “bucks Gut” the magnetic field. 

This “bucking out” may be useful in establishing the super- 
conductivity of materials with tiny critical fields. After ambient 
fields have been reduced as far as is possible by conventional 
means, the effects of tiny residual fields can ultimately be can- 
celled by rotation of the specimen. 

We now go on to the solutions of London’s equation for 
the cylinder. In cylindrical coordinates, with p the radial 
coordinate and with B + Bo along the z-axis, Eq. (2) 
becomes 

We now change to a dimensionless variable r = p / ~ ,  
write b(r) = B(T) + Bo, and obtain 

1 d  
r dr - -- ( T  $) + b = 0 (4) 

This equation has as its solutions the hyperbolic Bessel 
functions of zero order: 

b ( r )  = a Io  ( T )  + ,8 KO ( T )  (5 )  

where 

I, ( T )  = J, (ir)  

K ,  ( r )  = H F )  (ir)  

The function K,,(r) ,  which behaves as In T + const for 
T = 0, must be excluded for the case of a solid cylinder. 
The solution for the solid cylinder of radius R is thus 

If R, p >> A, then, 

(7) 

so that for p<< R in the interior of the cylinder, regard- 
less of B ( R )  (the value of the applied axial field), 

B ( p )  + Bo = 0 

We see from this solution what we anticipated before: 
just as in the stationary superconductor surface currents 
arise that tend to screen any external field (less than 
critical, of course) from the interior where the field 
remains zero, so in the rotating superconductor, the sur- 
face currents also screen the external field but leave the 
interior with the field -Bo .  
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For the hollow cylinder, however, both Bessel func- 
tions must be retained. The boundary condition to be 
imposed on the interior wall of the cylinder at RiA is 
most conveniently expressed in terms of the fluxoid. The 
fluxoid, defined as 

is a constant that is fixed at the moment the supercon- 
ductor becomes superconducting; and it remains constant 
so long as the superconductor is in a stationary state 
(Ref. 2). For the cylinder, 

e A(r) dA = -TR: X z  B(Ri )  9 C C 
I . I = X R ,  

and so, the fluxoid % is given as 

e e 
%r Ri X muS(Ri) + -TRT A’ B(R1) - CP 

C C 

From Maxwell’s equation, we have 

e 
mc us(Ri)  = Ri Xo - h-B’(R1) 

and so, 

Ri -IJ(R+) + - b(Ri) = 2 2x A’ Ri 

NOW, since 

T - T  -z; + -zo = 2zz 2 (13) 

and since analogous expressions hold for K ,  we have, 
finally, 

where 

and mo is the outer radius of the cylinder. 

It is now important to notice that the first term in 
Eq. (14) corresponds to a “frozen in” part of b(r) as a 
result of fluxoid conservation. This term is unaffected 
by either the rotational state of the superconductor or 
the external field present outside the superconductor, 
these contributing only through the term b(Ro). We 
point out again that CP is fixed at the time the cylinder 
becomes superconducting and is unaffected by whatever 
happens to the cylinder after that time, so long as it 
remains superconducting. 
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IV. DETERMINATION OF THE FLUXOID 

The field in the hollow, B(R,),  for a cylinder of arbi- 
trary dimensions, depends on all three of the relevant 
physical quantities : the external field, the velocity of 
rotation, and the fluxoid. If, however, the superconduc- 
tor is stationary and there is no applied field, then B(Ri )  
depends only on the fluxoid and is 

here, 

1 

[If we now assume that Ri >> 1 (diameter much greater 
than a penetration depth) and R, - Ri = 6 << 1 (thick- 
ness much less than a penetration depth), then, to within 
first order in 6, we find 

- 2s 
Do, = - 

i7r Ri 

2 1  D,, = -- 
?r Ri 

The flux 9 associated with the fluxoid a, then, has the 
form 

=+(1+&) 

and it agrees with expressions previously obtained by 
other methods (Ref. 4).* However, as we see, this expres- 
sion is already a consequence of London's equations, and 
to obtain it, it is not necessary to invoke the Ginzburg- 
Landau equations as might be inferred from Ref. 4.1 

However, in the limit 6 >> 1 (thickness much greater 
than penetration depth), the fluxoid ceases to depend on 

*Mercereau and Hunt also realize that London's theory suffices to 
obtain the relation that holds between flux and fluxoid in a thin 
cylinder. 

the external field. In this limit, b(r) takes on a simple 
form: 

sinh (Ri - R,) b(r) = - 

(18) 
Thus, in this approximation,* 

a 
TRS A' b(Ri) = + - 

and 

2mc @ B ( R i ) = - - w + -  
e "(Rib)' 

We now notice from Eq. (19b) that if the supercon- 
ductor with no persistent current (a = 0) is rotated, then 
the field becomes -Bo in the hollow of the cylinder; 
this is precisely what Hildebrandt (Ref. 1) found. How- 
ever, suppose now that the cylinder is made supercon- 
ducting while it is rotating. What value of the fluxoid is 
then established? Hildebrandt finds B(Ri) = 0, so that 
according to Eq. (19b), 

This means that 

@ = 7rR: A' Bo 

b(Ri) = B(Ri) = Bo 

@Ob) 

(204 

so that when the superconductor is stopped, 

The following argument demonstrates how this value 
of the fluxoid is generated. The argument is based on 
the way the cylinder becomes superconducting. If we 
suppose that in the cylinder there are nucleation sites 
where the material first becomes superconducting 
(Ref. 5), we can imagine little spheres, say, of super- 
conducting material, that grow with time and finally 
coalesce to make the entire material superconducting. 

*From Eq. ( 18), we can also see that if the cylinder wall is thick 
enough compared to the penetration distance, b(  r )  0 in the 
wall within a certain distance from either edge. In this region, 
then, B ( r )  = -Bo regardless of the values of either the fluxoid 
or the external field, and again we recover the Meissner effect 
for a rotating superconductor. 
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Since they have an angular velocity, these spheres will 
have the proper surface current to generate the field 
-Bo, as soon as their diameter exceeds the penetration 
depth. If an applied field is present, an additional sur- 
face current will appear in order to maintain the internal 
field at the value -Bo. If the surface currents are 
added up as the spheres coalesce, currents will be found 
to cancel except on the inside and outside surfaces of 
the cylinder. On these surfaces, the currents will be 
equal and opposite, and, as a result, the applied field 
will appear in the hollow of the superconductor. 

The argument that this field configuration is thermo- 
dynamically stable is based on an expression introduced 
for the free energy of a rotating superconductor in an 
applied field. We write the free energy as a sum of 
two terms. The first term, gR(T)V, is the free energy of 
the stationary superconductor in zero field; it is simply 
the temperature (T)-dependent free-energy density multi- 
plied by the volume V of the superconductor. To this, 
we add a second term which, for thick-walled super- 
conductors, is simply the magnetic energy generated by 
rotation of the superconductor. This energy represents 
the isothermal work done by the superconductor on the 
magnetic field. Further discussion of this expression will 
be presented in Ref. 3. Here, we limit ourselves to apply- 
ing it to the hollow cylinder to determine the value of 
the fluxoid that leads to the minimum magnetic energy 
generated by the cylinder when it is made to rotate. 

The argument is essentially this: Outside the cylinder, 
there is the applied field B,; inside the wall, if it is thick 
enough, the field is -Bo and is unaffected by either the 
field in the hollow of the cylinder or the field applied. 
Clearly, then, for a thick-walled cylindrical supercon- 
ductor with angular velocity w0, the magnetic energy 
generated is a minimum if B(R1) - B, = 0 in its hollow. 
From Eq. (19b), it is clear that 

= + A3; ( R J ) ~  

e 
2mc u; = 0 0  + - B w  

It might be of some interest to calculate the proper 
value of the fluxoid for the thin-walled cylinder. How- 
ever, we forego that calculation here and regard Eqs. (21) 
as our main result. 

We now see that the field B ( R i )  in the rotating cylin- 
der depends on its “history” through the term (2mde) , 
and so the field is not a unique function of the angular 
velocity of the cylinder. This is at least in qualitative 
accord with Hildebrandt’s experiments (Ref. 1). 
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